A GENERAL METHOD FOR THE PREPARATION OF <- FLUOROALDEHYDES.

Ernst D. Bergmann and Amnon Cohen Department of Organic Chemistry, ^Hebrew University, Jerusalem (Received 6 February 1965; in revised form 5 March 1965)

Whilst \propto -fluoroalkanoic acids are available by halogen exchange in the corresponding \propto -chloroacids (1), from the <u>p</u>-toluenesulfonates of cyanohydrins and potassium fluoride (2), and by the reaction of diazoalkanes with ethyl fluoro-formate (3), in the series of the corresponding \propto -fluoroaldehydes, only fluoro-acetaldehyde has been prepared so far, and in very unsatisfactory yield at that (4-6). Reduction of \propto -fluoroacids of their derivatives by the usual methods is often accompanied by hydrogenolysis of the C-F bond. However, the reduction of \propto -fluoroacyl chlorides with lithium aluminium tri-(<u>t</u>-butoxy)-hydride (7) at -70° proved to be generally applicable.

In an atmosphere of nitrogen and at -80° , the reducing agent (0.1 mole), dissolved in tetrahydrofuran (100 ml.), was added to a solution of the α -fluoroacyl chloride (0.1 mcle) in the same solvent (100 ml.). Care was taken that during the addition the temperature did not rise above -76° . Then the mixture was permitted to reach slowly room temperature. In order to ascertain the yields of the very volatile products, the reaction mixture was added to an excess of a solution of 2,4-dinitrophenylhydrazine in 2N hydrochloric acid. Thus were obtained the 2,4dinitrophenylhydrazones of

<u>fluoroacetaldehyde</u>, m.p. 150° (from ethanol) (lit. (4.6) : between 141.5 and 147°); yield, 52%.

<u>Anal</u> Calcd. for C₈H₇FN₄O₄: C, 39.7; H, 2.9; F, 7.9. Found : C, 40.0; H, 3.2; F, 7.7.

<u>a-fluoropropionaldehyde</u>, m.p. 135⁰ (from ethanol); yield, 60%.

<u>Anal</u> Calcd. for C9H9FN404: C, 42.2; H, 3.5; F, 7.4.

Found: C, 42.1; H, 3.4; F, 7.0.

-fluorobutyraldehyde, m.p. 1080 (from butanol); yield, 65%.

Anal, Calcd. for C10H11FN404 : C, 44.4; H, 4.1; F, 7.0.

Found : C, 44.4; H, 4.2; F, 7.0.

For the preparation of \checkmark -fluorobutyryl chlorides the unknown <u>ethyl \checkmark -fluorobutyrate</u> was obtained by slow addition of ethyl \checkmark -bromobutyrate to a well-agitated mixture of potassium fluoride and acetamide (1), kept at 140° and in a vacuum of 150 mm, so that the fluoroester formed distilled off continuously and the temperature at the head of the column never exceeded 80°. Redistillation gave a yield of 39%; b.p. 136° (690 mm). \checkmark -Fluorobutyryl chloride was prepared from potassium

A-fluorobutyrate and benzoyl chloride; it boiled at $103-104^{\circ}$ (690 mm_o) and gave an anilide, m.p. 60° (from petroleum ether).

<u>Anal</u>. Calcd. for C₁₀H₁₂FNO: C, 66.4; H, 6.6; F, 10.5 Found: C. 66.5; H, 6.4; F. 10.4.

The d-fluorinated aldehydes which have thus become easily available, permit many interesting syntheses which are now being investigated.

After this study had been completed, Elkik (8) reported a similar method for the preparation of d -fluoroaldehydes, <u>viz</u>, the reduction of the N-methylanilides of σ -fluoroacids by lithium aluminium hydride at -30° to -40°. The yields reported for σ -fluorobutyraldehyde and σ -fluorovaleraldehyde were 26 and 31%, respectively.

REFERENCES

1.	E.D. Bergmann and I. Blank, <u>J.Chem.Soc.</u> , 3786 (1953)
2.	E.D. Bergmann and I. Shahak, Bull. Israel Research Council, 104, 1(1961).
3.	E.D. Bergmann and I. Shahak, unpublished results.
4.	B.C. Saunders, G.J. Stacey and I.G.E. Wilding, <u>J.Chem.Soc</u> ., 773 (1949) (oxidation of fluoroethanol).
5.	G. Oláh and A. Parláth, <u>Acta Chim.Acad.Sci.Hung</u> 3 , 425 (1953) (periodate fission of monofluorohydrin)
6.	G. Olan and I. Kuhn, <u>Ber., 89</u> , 862 (1956) (diozoacetaldehyde and hydrogen fluoride)
7.	H.C. Brown and B.C. Subba Rao , <u>J.Amer.Chem.Soc</u> ., <u>80</u> , 5377 (1958).
8.	E. Elkik, Bull. Soc. chim. France, 2254 (1964).